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ABSTRACT

This paper presents a method to bias correct and downscale wind speed over water bodies that are un-

resolved by numerical weather prediction (NWP) models and analyses. The dependency of wind speeds over

water bodies to fetch length is investigated as a predictor of model wind speed error. Because model bias is

found to be related to the forecast wind direction, a statistical method that uses the forecast fetch to remove

wind speed bias is developed and tested. The method estimates wind speed bias using recent forecast errors

from similar stations (i.e., those with comparable fetch lengths). As a result, the bias correction is not tied to

local observations but instead to locations with similar land–water characteristics. Thus, it can also be used to

downscale wind fields over inland and coastal water bodies. The fetch method is compared to four reference

bias correctionmethods using one year’s worth of wind speed output from threeNWPanalyses in Florida. The

fetch method yields a bias error near zero and results in a reduction of the mean absolute error that is

comparable to the reference methods. The fetch method is then used to bias correct and downscale a coarse

analysis to 500-m grid spacing over a coastal estuary in central Florida.

1. Introduction

Numerical weather prediction (NWP) models are es-

sential tools for weather forecasting. Yet, current oper-

ationalmodels are prone to systematic errors (biases) due

to coarse model resolution and imperfections in model

physics, initial conditions, and boundary conditions

(Mass et al. 2002). One effective method of removing

biases is statistical postprocessing (hereafter referred to

as postprocessing) of model output. In general, NWP

models cannot realize their full potential without post-

processing model output (Gneiting and Raftery 2005).

This study focuses on postprocessing methods for 10-m

wind speed forecasts. Popular methods for this purpose

include running-mean bias correction (e.g., Stensrud and

Yussouf 2005; Cheng and Steenburgh 2007), Kalman fil-

tering (e.g., Louka et al. 2008; Cassola and Burlando

2012), machine learning methods (e.g., Salcedo-Sanz

et al. 2009), andmodel output statistics (MOS; Glahn and

Lowry 1972; Carter 1975). Comparison studies have

shown that MOS is the most successful method for re-

ducing wind speed forecast error (Cheng and Steenburgh

2007;Müller 2011). However,MOS requires an extensive

training dataset and a static model, motivating the de-

velopment of more adaptable postprocessing techniques.

Traditional postprocessingmethods, such as those just

mentioned, are tied to locations with verifying obser-

vations. Yet bias-corrected forecasts are needed at lo-

cations without verifying observations (Mass et al.

2008). Yussouf and Stensrud (2006) used a Cressman

weighting scheme (Cressman 1959) to interpolate wind

speed biases onto a grid over Oklahoma. While

distance-weighted interpolation schemes may be ap-

propriate for regions with little topographical variability

and marginal differences in land-use characteristics, it is

problematic in regions of complex terrain. Because of

complex interactions with topography, Engel and Ebert

(2007) suggest that wind postprocessing methods need a

combined physical and statistical approach.

De Rooy and Kok (2004) presented such an approach

and applied it to downscale model wind speed over the
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Netherlands. They first identified and removed the sys-

tematic error due to the difference in surface roughness

between the model grid cell and verifying observation

locations. The residual bias was then attributed to large-

scale model error. Using roughness length estimates

derived from a 1-km land-use grid, they applied their

physical/statistical method to wind speed forecasts.

However, their approach did not address flow-dependent

(anisotropic) bias near water boundaries, and thus it was

not applied in the coastal zone.

Representative, high-resolution wind information in

nearshore and coastal areas is essential for applications

such as forcing hydrodynamic models (e.g., Weaver et al.

2016) and wind energy resource assessments (e.g., Al-

Yahyai et al. 2010; Charabi et al. 2011). However, even

dynamically downscaled winds are error prone at coastal

sites and in regions of complex terrain (Mortensen et al.

2006; Gastón et al. 2008). Acquiring sufficient data for

wind energy assessments through dynamical downscaling

is time and resource intensive, motivating the develop-

ment of statistical methods (Zhang et al. 2015).

Here, we introduce an inexpensive, physically based

statistical method to bias correct model wind speed out-

put at observation-free locations near and over water

bodies. As such, themain advantage of ourmethod is that

it is ideally suited for use within a downscaling frame-

work. It is developed based on the work of Mass et al.

(2008), who estimated surface temperature biases at grid

points using errors from physically similar observing lo-

cations (i.e., locations with similar elevation and land

use). Here, in the context of wind speed, we show that

forecast error over unresolved water bodies is, in part,

fetch dependent (defined here as the distance wind blows

over water in a constant direction without obstruction)

and thus coupled to the forecast wind direction. We

outline an approach that uses errors from stations with

similar forecast fetch lengths to bias correct wind speed,

and compare the results against popular local bias cor-

rection methods.

The remainder of this paper is outlined as follows. Sec-

tion 2 describes the area of study and the model and veri-

fication data used. Section 3 outlines the fetch method and

details four other postprocessing methods used for com-

parison. Section 4 presents the results, including a down-

scaling case study, and section 5 concludeswith a discussion

of the results and provides suggestions for future work.

2. Data

a. Study area

The Indian River Lagoon (IRL) in Florida is approxi-

mately 250km long, has an average width of 2–4km, and

varies on the order of 1–3m in depth. It is an estuarine

system comprised of the Indian River, Banana River, and

Mosquito Lagoon. The northern half of the IRL and

nearby Cape Canaveral are shown in Fig. 1e. As a result

of the IRL’s narrowness and complex land/water mask, it

is either poorly resolved or completely unresolved by

current operational NWP models and analyses. This can

result inmodeled surface winds that are unrepresentative

of winds observed over the IRL.

Wind stress is the primary forcing for circulation

throughout most of the IRL (Smith 1990). Hydrodynamic

models, suchas theAdvancedCirculationmodel (ADCIRC;

Luettich andWesterink 2004), rely on accurate wind forcing

from NWP models. In a recent IRL circulation study,

Weaver et al. (2016) demonstrate the value in subkilometer

wind forcing. In that study the authors downscaledGFSwind

output with the Weather Research and Forecasting (WRF;

Skamarock et al. 2008) Model. However, dynamical down-

scaling is not feasible for most operational users, especially

within the ensemble framework.

b. Observations

High quality wind observations over the IRL, as in

many other estuaries, are sparse. WeatherFlow Inc.

(http://www.weatherflow.com) provides the most ex-

tensive network of quality controlled observations over

the IRL.WeatherFlow operates three stations with open

(i.e., over water) fetch greater than 1km in all directions

(XPAR, XCCB, and XJEN) and two additional stations

on the IRL shoreline (XMER and XRPT).

To ensure significance in the training dataset, we ex-

pand our area of focus beyond the IRL to incorporate

nine additional sites in four water basins in Florida that

are appropriate for this study. The basins include Tampa

Bay, Lake Okeechobee, the St. John’s River, and Lake

Tohopekaliga. Two stations are located in Tampa Bay,

one fromWeatherFlow Inc. (XTAM), and one from the

National Ocean Service (NOS; MTBF1). Four stations,

all from the South Florida Water Management District

(SFWMD) are on Lake Okeechobee (L001, L005, L006,

and LZ40). Two stations, from the NOS network, are

located near the western shore of the St. John’s River

(GCVF1 and BKBF1). The SFWMD station S61W is

located along the southern shore of Lake Tohopekaliga.

The locations of the 14 stations and their respective

water basins are shown in Fig. 1.

In cases where the anemometer height is not at 10m, a

10-m wind speed equivalent U10 was calculated follow-

ing Hsu et al. (1994):

U
10
5U

�
10m

z

�0:11

, (1)
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where U is the observed wind speed at the anemometer

height z. The exponent in Eq. (1) was determined em-

pirically by Hsu et al. (1994) to be a good fit for near-

neutral conditions at sea. The near-neutral assumption is

not appropriate for the surface layer over Florida for

much of the year, but provides a sufficient zero-order

adjustment to normalize the heights of the observations.

Table 1 shows the anemometer heights for each station,

as well as the location, network, basin, and data cover-

age during the study period (10 October 2014–10 Octo-

ber 2015). Most wind data provided by these stations are

reported in intervals ranging from 5 to 15min. Only the

observed wind speeds closest in time (within a 10-min

window) to the 3-hourly NWP model output were used.

The heights in Table 1 represent the height of the

anemometer above water (or above land for stations lo-

cated along the shoreline). Water level changes through-

out the temporal coverage of this study were negligible

except for the four stations over Lake Okeechobee

(marked in Table 1). While the heights listed in Table 1

are the average heights throughout the study period, the

daily water level at each Lake Okeechobee station was

used to determine the anemometer height above water

when calculating the 10-m equivalent wind speeds. For

example, the average anemometer height for station L001

was 7.0m, with a range from 6.3 to 7.8m.

c. Model output

Three surface (10m) wind datasets from the National

Centers for Environmental Prediction (NCEP) were

used in this study including model output from the

Global Ensemble Forecast System (GEFS) and Short-

Range Ensemble Forecast (SREF) Advanced Research

version ofWRF (ARW) control members, and theReal-

Time Mesoscale Analysis (RTMA; De Pondeca et al.

2011). The GEFS produces global output every 6 h

(0000, 0600, 1200, and 1800 UTC) on a 1.08 latitude–
longitude grid. The SREF-ARW also generates output

every 6 h, offset from the GEFS by 3h (0300, 0900, 1500,

and 2100 UTC). The SREF-ARW uses a Lambert conic

conformal (LCC) grid that covers a majority of North

America and the surrounding ocean with horizontal grid

FIG. 1. The locations of the 14 surface stations (Table 1) used in this study. (a) A regional view of the FL peninsula, with enlargements of

(b) the St. John’s River, (c) TampaBay, (d) LakeOkeechobee, and (e) the IRL. Note that XJEN, which is south of the region shown in (e),

is considered to be part of the IRL basin.
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spacing near 40 km. The RTMA is an hourly analysis

product with 2.5-km grid spacing over the continental

United States. While only the control members of these

ensemble systems are used here, in future work the fetch

method will be used to downscale the full ensemble suite

of the GEFS and SREF.

This study compares wind observations against both

analyses and model forecasts with an emphasis on the

former.We focus on analyses for two reasons. The first is

to mitigate the impact of forecast errors and investigate

the effect that NWP grid spacing has on the fetch

method. To accomplish this, we apply the fetch method

to the 2.5-kmRTMA as well as the coarser SREF-ARW

and GEFS analyses. Second, NWP model analyses have

many applications, including model verification and

initial (IC) and boundary condition (BC) forcing, etc.,

for dynamical downscaling (e.g., Davis et al. 2008;

Carvalho et al. 2014; Li et al. 2012). For example,

hindcasting studies of waves and circulation often use

wind forcing from downscaled analyses (e.g., Weaver

et al. 2016; Chen and Curcic 2016). In particular, we

want to determine if the fetch method can successfully

downscale coarse analysis wind speed fields to provide

inexpensive yet representative ensemble wind forcing

for future hindcasting studies as well as input to simple

wind–wave parameterizations.

A major source of error in 10-m wind speed forecasts

is related to roughness differences between model grid

cells and observation stations (Strassberg et al. 2008).

This is particularly true when a model resolves the lo-

cation of an overwater observation station as land, or

vice versa. Figures 2a–c show the land masks of the

GEFS, SREF-ARW, and RTMA, respectively. Despite

its size (;50km wide), Lake Okeechobee is resolved as

land by both the GEFS and SREF-ARW. The St. John’s

River is also fully resolved as land by both theGEFS and

SREF-ARW, while the RTMA resolves only the widest

sections as water. The station locations in Tampa Bay

are represented as water by both the GEFS and SREF-

ARW, although portions of the bay itself are resolved as

land. The northern IRL is resolved as land by the GEFS,

while the southern portion of the IRL is resolved as

water. The SREF-ARW resolves only one of the IRL

stations as land, but all the IRL stations are on the edge

of the SREF-ARW landmask. The RTMA provides the

most representative land mask for all of the water basins

studied here, but the shorelines of the Tampa Bay,

St. John’s River, and the IRL are still too complex for

the 2.5-km grid spacing. Figure 2c shows a close up of the

RTMA land mask over Cape Canaveral in the northern

IRL. XPAR, while sited over water and more than a

kilometer away from the IRL shoreline, is on the edge of

the RTMA land mask. Additionally, XMER, while on

the IRL shoreline, is resolved approximately 700m in-

land on the RTMA grid.

The standard practice when postprocessing model

output is to interpolate to the location of the verifying

observations. The impact that interpolation has on

postprocessing over unresolved water bodies is unclear.

Because of this, postprocessing was performed using

output from the closest grid cell to each verifying station

as well as that interpolated from the four adjacent grid

cells using inverse distance weighting. This results in six

distinct wind fields: both gridded and interpolated winds

from two models and an analysis.

3. Methods

Our hypothesis is that one source of systematic wind

speed error over small bodies of water is that they are

poorly resolved by NWP models. The fetch method

applied here attempts to determine systematic wind

TABLE 1. Metadata for the 14 stations used in this study, grouped by basin.

Station ID Station name Basin Network Location Height (m) Data coverage (%)

XPAR Parrish Park North IRL WeatherFlow 28.638N, 80.818W 5.5 94.0

XMER Banana River 528 IRL WeatherFlow 28.408N, 80.668W 9.1 67.2

XRPT Rocky Point IRL WeatherFlow 27.988N, 80.558W 6.1 93.9

XCCB Banana River 520 IRL WeatherFlow 38.368N, 80.658W 4.9 93.9

XJEN Jensen Beach IRL WeatherFlow 27.228N, 80.208W 4.9 94.0

L001 Lake Okeechobee north end Okeechobee SFWMD 27.148N, 80.798W 7.0a 97.0

L005 Lake Okeechobee west end Okeechobee SFWMD 26.968N, 80.948W 7.1a 96.6

L006 Lake Okeechobee south end Okeechobee SFWMD 26.828N, 80.788W 7.1a 96.8

LZ40 Lake Okeechobee center Okeechobee SFWMD 26.908N, 80.798W 7.0a 96.8

GCVF1 Red Bay Point St. John’s NOS 29.988N, 81.638W 8.5 97.8

BKBF1 I-295 bridge St. John’s NOS 30.198N, 81.698W 9.7 98.2

MTBF1 Middle Tampa Bay Tampa Bay NOS 27.668N, 82.598W 6.7 97.9

XTAM Tampa Bay Cut J Tampa Bay WeatherFlow 27.778N, 82.578W 14.6 94.0

S61W Lake Tohopekaliga Tohopekaliga SFWMD 28.148N, 81.358W 15.8 96.4

a The height of the stations in Lake Okeechobee indicate an average anemometer height above water during the study period.
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speed error in NWP model output using error estimates

from similar stations. If successful, the technique could

be used to provide downscaled, gridded, bias-corrected

wind speeds over coastal estuaries, lakes, etc. In this

section we describe the fetch approach.We also describe

four known bias correction methods for wind speed, to

which the fetch method will be compared.

Systematic error (bias) is determined by comparing

NWP output to verifying observations within a pre-

defined period, hereinafter referred to as the training

data. The training dataset consists of analysis/observation

winds valid at the time of each analysis cycle. The GEFS

and SREF-ARWmodels, which both cycle four times per

day, are offset by 3 h. To be consistent with the GEFS

and SREF-ARW, the hourly RTMA winds were only

verified every 3 h, providing eight analysis/observation

pairs per day.

When implementing bias correction methods, it is

important to determine the optimal number of analysis/

observation pairs to include in the training dataset. One

way to optimize the process is by varying the number of

days included in the training dataset (i.e., the window

length). When window lengths are large, more data are

available to establish robust models of systematic error.

Conversely, window lengths should be short enough to

respond to model and weather regime changes. For ex-

ample, model biases change with the seasons (Cheng

and Steenburgh 2007). In this study, we tested window

lengths from 10 to 60 days in increments of 5 days

throughout the year-long study period. We found that a

window length of 30 days resulted in the lowest mean

absolute error (MAE) and, thus, was used for each bias

correction method.

In the following section, we discuss the bias correction

methods used in this study. Each method is applied to

3-hourly model output for a 1-yr period beginning 10

October 2014. The biases for eachmethod are determined,

independently, for each model cycle.

a. The fetch method

The objective of this method is to provide gridded,

downscaled, bias-corrected wind speeds over unresolved

FIG. 2. The land masks for the (a) GEFS, (b) SREF-ARW, and (c) RTMA. The gray shading delineates land for each of the respective

models. The 2.5-km RTMA land mask is much more representative of the FL peninsula as a whole, so only a close-up of Cape Canaveral

is shown.
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water bodies. Becausemost grid cells lack observations, a

traditional local bias correction approach (e.g., MOS) is

not possible. In contrast, our method builds training

datasets using recent errors obtained from similar ob-

serving stations—that is, regional observations that are

also near or over unresolved water bodies.

Before applying the method, the fetch at each

station was determined using QGIS, an open

source desktop geospatial software package (QGIS

Development Team 2016), for 16 directions (every

22.58), starting at due north (see Fig. 3 for examples).

Short fetches (less than 1 km) are accurate to 25m

while longer fetches were determined to 100-m ac-

curacy. Locations at the ends of piers (such as XRPT)

were considered to be open water and thus an

offshore wind would have a fetch equal to the length

of the pier.

The steps of the fetch method are relatively

straightforward. For a given over-water location, we

begin by constructing a training dataset composed of

recent errors (within 30 days) from similar observing

stations (the 14 stations presented in section 2b). The

analysis/observation pairs are stratified by analysis cy-

cle. For each of these pairs, we determine the fetch

using the analysis wind direction (in 22.58 bins) and

corresponding fetch lengths. For the stations and di-

rections used here, 51% of fetches are below 5km, 30%

are between 5 and 15 km, and the remaining 19% are

greater than 15 km (Fig. 4). Shorter fetches (,5 km)

occur mainly at the IRL and St. John’s stations, while

FIG. 3. Fetch rays for the (a) S61W, (b) XRPT, (c) XTAM, and (d) BKBF1 stations. The scale is the same for all

four panels. Although stations XRPT and BKBF1 are ‘‘shoreline’’ locations, they are both located at the ends of

piers, and thus have nominal downwind nearshore fetches on the order of 100m.
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longer fetches (.15 km) occur at the Tampa Bay and

Lake Okeechobee stations.

To estimate a representative bias at a location within

the analysis grid, the training data are trimmed so that

they contain only relevant pairs with fetch lengths con-

sistent with the given analysis fetch at our point of in-

terest. This is done by sorting the training data by fetch

length and retaining 20% of the pairs that are nearest to

the given analysis fetch. However, for fetch lengths near

zero (50km), only 10% of the pairs with the smallest

(largest) fetches are preserved in the final training

dataset. With 14 available stations and a window length

of 30 days this refined dataset contained, on average,

72 pairs. Preserving a percentage, as opposed to all pairs

within a given fetch length window (e.g., 65 km), is

advantageous since shorter fetches (,10 km) are much

more common than longer fetches at these stations

(Fig. 4). We also tested retaining 10% and 30% of the

available training data, but found retaining 20% to re-

duce MAE the most (not shown).

The average wind speed error (bias), for the given

analysis fetch length, is then calculated assuming that

each pair of the refined dataset has equal weight. The

bias is then removed from the analysis wind speed

by subtraction. Thus, in contrast to traditional data as-

similation, interpolation, and statistical downscaling

approaches, a station’s proximity does not directly im-

pact the weight given to its observations here. Instead,

fetch length, rather than distance, is a more meaningful

predictor of wind speed error for these water locations.

As an example, the fetch method is applied at station

S61W using the 30 July 2015 interpolated GEFS ana-

lyses. The 30-day (prior) training dataset for each

analysis cycle is shown in Fig. 5. The scatterplots were gen-

erated using interpolated GEFS analysis/observation pairs

from 13 stations (S61W was not included in the training

data). The exclusion of S61W’s data is critical here, since

the fetch approach is designed for use at observation-

free locations. The black lines depict the bias estimate

as a function of analysis fetch using the trimmed training

set methodology described earlier. For the 1200 UTC

analysis (Fig. 5b), the wind direction at S61W is out of

the SSW, which corresponds to a fetch of 0 km and a bias

estimate of 11.12m s21. Subtracting this from the

analysis wind speed (1.99m s21) yields a bias-corrected

value of 0.87m s21. For this and the other methods used

in this study, the bias-corrected wind speed was set to

zero if the correction produced a negative wind speed.

This occurred 0.35% of the time.

Figure 5 indicates that there is a relationship, albeit

noisy, between wind speed error and analysis fetch.

Negative (positive) wind speed error indicates that the

analysis wind speed is less (greater) than the observed.As

the fetch approaches zero, the analysis wind speeds are

biased high (positivewind speed error) for the 0000, 0600,

and 1200 UTC cycles. As the fetch increases, the wind

speed error quickly becomes negative, while asymptoti-

cally approaching values on the order of 22ms21. For

the most part, the positive bias is absent in the 1800 UTC

training dataset (Fig. 5c), and the wind speed error is

relatively constant (near 22ms21) for all fetch lengths.

The same data are shown in Figs. 4e–h but the x axis has

been transformed to a natural log-based scale. In these

plots the bias estimates (black lines) resemble negatively

oriented trend lines, with the exception of the 1800 UTC

analysis cycle, which has a near-zero slope. Plots of wind

FIG. 4. Histogram of the 224 possible fetch lengths (14 stations, 16 directions), binned every 2.5 km and colored

by basin.
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FIG. 5. Training dataset (analysis/observation pairs) composited from a 30-day prior window (to 30 Jul 2015) and

13 stations (S61Wwas not used). The data are stratified by the GEFS forecast cycles at (a) 0600, (b) 1200, (c) 1800,

and (d) 0000 UTC. (e)–(h) As in (a)–(d), but with a natural log-scale x axis. The plots are arranged (from top to

bottom) to correspondwith the local diurnal cycle, i.e., middle of the night (0600UTC), morning (1200UTC), early

afternoon (1800 UTC), and early evening (0000 UTC). The solid black line represents the bias estimate given the

fetch length (see text for details).
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speed error versus fetch length for each month (not

shown) show that these diurnal error trends are largely

present year-round. As such, the 1800 UTC anomaly is

discussed in more detail in section 5.

A total of eight different fetch estimation methods

were tested using both the analysis and observed wind

directions. Because there are bridges in both the IRL

and along the western edge of Tampa Bay, as well as

spoil islands in the former, we investigate whether or not

the fetch should be limited by these features. To test this,

we determined fetch lengths that both stopped and

continued at bridges and spoil islands. Also, the effec-

tive fetch (see U.S. Army Coastal Engineering Research

Center 1977; Keddy 1982), which uses weighted aver-

aging of nearby fetches to account for complex shore-

lines, was also calculated. Thus, the fetch method was

tested using both effective and direct fetch, with and

without bridges and spoil islands, and for both observed

and analysis winds. While MAE differences were small

(i.e., less than 0.03ms21 for gridded GEFS output) be-

tween the eight scenarios, the obstacle-limited direct

fetch, calculated using the analysis wind direction, re-

sulted in the lowestMAE.As a result, this fetch estimate

was used for the remainder of the paper.

b. Comparative bias correction methods

To evaluate the fetch method, we apply it to the three

analyses at the 14 station locations (Table 1), using a

standard data withdrawal methodology that exempts the

verifying location from the training dataset. Using the

observed wind speed, we then compare the fetch ap-

proach, at each station, against four popular bias cor-

rection methods.

1) RUNNING MEAN

The running mean bias correction method calculates

the mean wind speed error over the previous 30 days.

Given m analysis/observation pairs within the 30-day

window, the running mean bias is defined as

bias
RM

5
1

m
�
m

i51

(a
i
2 o

i
) , (2)

where ai and oi are the analysis and observation, re-

spectively. The bias-corrected analysis is calculated by

subtracting the average bias from the current analysis:

a
RM

5 a2 bias
RM

. (3)

2) HOURLY RUNNING MEAN

Past studies have shown that wind speed error varies

with the time of day (e.g., Cheng and Steenburgh 2007;

Sweeney et al. 2013). This is true of the stations used in

this study. as illustrated in Fig. 6a, which shows the ob-

served versus analysis wind speed error at station XRPT

for the interpolated GEFS (circles) and SREF-ARW

(squares) as a function of forecast cycle, as well as the

RTMA (triangles). The error is averaged over the study

period. The analysis wind speeds are biased low with the

exception of the 0600 and 1200 UTC GEFS. The mag-

nitude of the wind speed error is largest during the af-

ternoon and evening. To account for this diurnal-based

error, an additional running mean bias correction

method [i.e., Eq. (3)] is introduced whereby training

datasets are separated by forecast cycle; for example,

0000 UTC training data are only used for bias correcting

0000 UTC analyses.

3) LINEAR REGRESSION

The running mean methods can only identify and

remove additive errors. However, it has been shown

(e.g., Engel and Ebert 2007) that NWP models tend to

under- (over-) forecast strong (weak) winds. In general,

we found this to be the case for the stations used in this

study. For example, a scatterplot (Fig. 6b) of observed

versus interpolated GEFS analysis wind speeds at

XRPT (for the study period) and corresponding linear

regression indicates that slope error is present and thus

should be taken into account.

The method is developed by regressing NWP model

output (predictor) versus observed wind speeds (pre-

dictand). The linear model analysis wind speed aLM is

given by

a
LM

5b
0
1b

1
a , (4)

where a represents the current analysis wind speed and

b0 and b1 are regression coefficients found by minimiz-

ing the sum-squared error between the model output

and observations in the training dataset (Wilks 2011). As

in the running mean-hour method, separate training

datasets are constructed for each analysis cycle.

4) WIND DIRECTION

The observation stations used in this study are either

directly over water or along the shoreline. Three of the

water basins are narrow (except LakeOkeechobee), and

thus stations located in these regions will be highly sensitive

to the upwind surface roughness, resulting in directionally

varying wind speed biases. Figure 6c shows the average

wind speed error versus wind direction (at XRPT) for the

GEFS, SREF-ARW, and RTMA analyses. The analysis

wind speed error is negative (biased low) for flow ranging

(clockwise) fromnorthwesterly to southerly, wherewater is

upwind from XRPT (see Fig. 3b). Conversely, the bias is
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positive for southwesterly-to-northwesterly flow, with land

upstream. Thus, a direction-based approach could isolate

and correct for these anisotropic wind speed errors.

Sweeney et al. (2013) proposed a method that

limits training pairs to those that ‘‘match’’ the current

analysis wind direction. Here, we define a matching

pair if wind direction error is less than 308. Tests were
performed using a range of matching wind directions

from 208 to 458, but we found 308 to reduce MAE the

most. In the case of an infrequent wind direction, there

could be insufficient analysis/observation pairs to iden-

tify a meaningful direction-based bias. In this case, the

direction-based and running mean methods are combined

and weighted according to a user-specified number of

matching pairs in the training dataset (set to 20 here).

Thus, if therewere 0, 10, and 20 analysis/observations pairs

in the training dataset that matched the current analysis

wind direction, the running mean method would receive

full, half, and zero weight, respectively, and the direction-

based method would receive zero, half, and full weight,

respectively. We tested three additional observation

thresholds (5, 10, and 15) and found that 20 resulted in the

lowest MAE for the method.

We also tested restricting the analysis/observation

training pairs to those where both the analysis and

observed wind direction matched the current analysis

wind direction. This method was less effective at re-

ducing MAE, probably because of an insufficient num-

ber of matching analysis/observation pairs. It has been

noted (e.g., Cheng and Steenburgh 2005; Bao et al. 2010)

that wind direction observations are not reliable for

light winds. To account for this, an implementation of

FIG. 6. Analysis bias at stationXRPT for the 1-yr study period (see text). (a) Average bias vs analysis cycle for the

GEFS, SREF-ARW, and RTMA. (b) Scatterplot of observations vs interpolated GEFS analysis wind speeds (the

dashed line represents a perfect fit while the solid line is the average analysis wind speed given the observed wind

speed). (c) As in (a), but as a function of analysis wind direction.
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the wind direction method was applied where the

training dataset was restricted to pairs with observed

winds greater than 2.5m s21. However, this resulted in

slightly higher MAE values, so this restriction was not

imposed.

c. Verification

The bias correction methods are evaluated using the

mean absolute error [Wilks (2011), Eq. (8.29)]:

MAE5
1

n
�
n

i51

����ai 2 o
i

���� , (5)

where n is the product of all stations and all run cycles.

The MAE is therefore the average absolute error of the

analysis wind speed at the 14 verifying stations. The

MAE was calculated for each station, over the 1-yr pe-

riod, and then averaged across all stations for each

method. Similarly, the root-mean-square error (RMSE)

was also used to evaluate the bias correction methods,

but those results were nearly identical to the MAE

analysis and are not included here.

The mean bias error [BE; Wilks (2011), Eq. (8.32)]

was similarly calculated:

BE5
1

n
�
n

i51

(a
i
2 o

i
) . (6)

Themean bias error also reflects the average wind speed

bias across the entire dataset. For a bias correction

method to be effective, its output should have a BE

near zero.

4. Results

a. Results with analysis wind fields

ACleveland dot plot (Cleveland 1984) of theMAEand

BE associated with the raw model and bias-corrected

wind speed for each of the six model/analysis outputs

discussed in section 2c is shown in Fig. 7. For each of

the analysis outputs, the bias correction methods are

sorted in order of decreasing average MAE. Error bars

represent 95% confidence bounds estimated by boot-

strapping the set of wind speed errors for each bias

correction method and analysis product. For the raw

data, the largest error, using the gridded (i.e., nearest

neighbor) output, is in the coarsest of the three products,

the GEFS (MAE of 1.84m s21). Interpolation only

marginally reduces the error (1.76m s21). The opposite

is true of the SREF-ARW where the MAE of the in-

terpolated output is higher than the nearest neighbor.

The MAEs for the two RTMA outputs are almost

identical. Thus, interpolation does not necessarily

reduce the MAE, and its impact is mitigated as the

horizontal grid spacing decreases (see section 5). The

bias-corrected output behaves similarly (e.g., linear

model applied to the GEFS), with lower MAE when

applied to interpolated output (1.20m s21) compared to

the nearest neighbor (1.25m s21). For the RTMA, in-

terpolation results in little or no impact on the MAE for

any of the bias correction methods.

Whether applied to the interpolated or nearest-

neighbor analysis, each of the bias correction methods

reduces the MAE by at least 18%. In terms of MAE

reduction, the most effective local methods are the lin-

ear model for the GEFS (32.0%) and SREF-ARW

(25.7%) and the wind direction method for the RTMA

(25.2%). Regardless of which bias correction method is

applied to the interpolated GEFS output, the resulting

MAE is lower than the MAE from the raw interpolated

RTMA output. This finding is consistent with results

from other studies that show that postprocessing is, in

general, more effective at reducing model error than

increasing model resolution (e.g., Louka et al. 2008;

Müller 2011).
The MAE dot plot (Fig. 7, left) also shows that the

fetch method is comparable to the other methods.While

this method has higher error than the other bias cor-

rection methods when using the nearest-neighbor ap-

proach, it yields lower MAEs when compared with the

interpolated GEFS running mean (all hours) method,

and lowerMAEs than both the runningmean (all hours)

and wind direction methods applied to the interpolated

SREF-ARW. For theRTMA, the fetch approach results

in the highest MAEs of the bias correction methods,

although the decrease in MAEs is comparable with the

results of the other methods. The shortcomings of the

fetch method here are likely due to the RTMA’s im-

proved ability (compared with the GEFS and SREF-

ARW) to resolve these inland water bodies (see Fig. 2).

The right panels in Fig. 7 show that the average bias

error (across all stations and times) for each raw output is

negative. This does not hold true for all stations. For

example, the shoreline station XMER, which is sited

between a building and trees, had a positive average bias

throughout the study period (not shown). The bias asso-

ciated with raw gridded GEFS output is the most nega-

tive, near 21.5ms21. Interpolation alone decreases the

bias to21.24ms21, while interpolating the SREF-ARW

output results in a more negative bias. Interpolation has

very little impact on the RTMA bias. More importantly,

each of the bias correction methods reduces the error to

near zero in all versions of the analyses.

Other studies (e.g., Cheng and Steenburgh 2007) have

shown that the efficacy of bias correction can vary sea-

sonally. To investigate this, a 60-day center-average
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FIG. 7. Cleveland dot plot of the 14-station average (left) MAE and (right) BE during the 1-yr study

period. Results are shown for each bias correction method and analysis (gridded and interpolated). Error

bars represent 95% confidence intervals of respective group means determined by bootstrapping. See text

for details.
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MAE for each bias correction method and each analysis

was calculated. The data windowwas extended to include

60 additional days, from 10 September 2014 through

10 November 2015, so that a full year was still available

after the centered averages were calculated. Figures 8a–c

show the 60-day center-averaged MAEs for the in-

terpolated GEFS, SREF-ARW, and RTMA, respec-

tively. For brevity, the raw analysis data (dashed gray

lines) along with the output from just three of the bias

correction methods are shown, including the linear

(dashed black lines), wind direction (solid gray lines), and

fetch (solid black lines) models. The linear method was

selected because it resulted in the lowest MAEs for both

the GEFS and SREF-ARW while the wind direction

approach produced the lowest MAE for the RTMA.

These time series provide additional insight into the

fetch method’s performance. As is the case with the

other two bias correctionmethods shown, the fetch-based

FIG. 8. Time series of the 60-day centered-mean average MAE from the raw interpolated

analyses [i.e., no bias correction (none); dashed gray lines], and from the bias-corrected in-

terpolated analyses using the linear model (dashed black line), wind direction method (solid

gray line), and fetch method (solid black line). Results are shown for (a) GEFS, (b) SREF-

ARW, and (c) RTMA.
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60-day center-averaged MAE (hereafter referred to as

average MAE) is always lower than the results of the

raw analyses. For the GEFS, the fetch approach is

comparable to the direction method from April to

October but exhibits relatively large differences during

the winter. While the direction method displays little

temporal variability, the fetch approach has aDecember

peak, decreasing through May (from 1.45 to 1.2m s21).

For the SREF-ARW, the fetch method is similar to the

other methods from late December through early

March. Thereafter, the threemethods diverge until early

summer where the fetch and wind direction methods are

nearly identical. For the RTMA, the fetch method al-

ways has the highest MAE. Ultimately, the fetch ap-

proach is competitive with the other techniques, but the

degree to which it does so varies during portions of the

year, suggesting that other predictors might be used to

improve its performance.

Additionally, the time series of average MAEs shows

that the wind direction (linear) method is generally su-

perior to the other approaches during the cool (warm)

season, whenwinds are predominantly driven by synoptic-

scale (mesoscale) patterns. The implications of this result

warrant further investigation, which is beyond the scope

of this paper. Also, the downward trend in the average

MAE for the raw RTMA beginning in April 2015 is the

result of an upgrade on 14 April 2015 (McClung 2015).

After this date, the bias correction methods remove a

smaller percentage of the error, suggesting that the up-

grade has decreased the ratio of systematic error to ran-

dom error. A time series of 60-day centered-averaged bias

error results confirms this, as themagnitude of the average

bias error decreases from near 21.1 to 20.6ms21 fol-

lowing the upgrade (not shown).

b. Extending the method to forecasts

The fetch method is applied to model forecasts to in-

vestigate its utility within a forecast framework. The 18
GEFS produces forecasts every 6h out to 384h (16 days)

and the SREF-ARWevery 3h out to 87h (approximately

3.5 days). The fetch method is applied to 24- and 48-h

forecast wind fields for each GEFS and SREF-ARW run

cycle and results are verified against station observations

during the same 1-yr period used for the analyses. For

comparison purposes, the suite of bias correction methods

with a training window of 30 days is applied to the forecast

wind fields. The training dataset includes all but the most

recent (i.e., 24 and 48h) forecast/observation pairs since

the verifying observations occurred after the associated

forecast run cycle. Here, we only consider the interpolated

GEFS and SREF-ARW control output.

Figure 9 shows the MAEs associated with the raw

output and bias correction methods for both the GEFS

and SREF-ARW analyses and forecasts (24 and 48h).

Error bars represent 95% confidence intervals de-

termined by bootstrapping. The MAE represents the

error for all stations for the study period. The rawGEFS

MAE is actually lower for the forecast wind speed (1.60

and 1.62ms21 for the 24- and 48-h forecasts, re-

spectively) than the analysis wind speed (1.76m s21).

This is not the case however for the SREF-ARW, where

the forecast MAE is slightly larger than the analysis

(1.61 versus 1.63 and 1.72ms21, respectively). TheMAE

from all bias correction methods increases with forecast

hour, peaking at 48h whether applied to the GEFS or

SREF-ARW. Also, the bias correction methods’ ability

to reduce MAE decreases with increasing forecast hour.

This is due to the magnitude of the bias associated with

the raw models decreasing as the forecast hour increases

(not shown). Despite this, each bias correction method

produces a statistically distinct MAE, reducing it by

10%–20% compared to that of the raw models. This re-

duction is in line with results from other studies (e.g.,

Cheng and Steenburgh 2007).

For both the GEFS and SREF-ARW forecasts, the

linear model is the most effective of the bias correction

methods. The largest differences (i.e., the largest re-

duction in MAE) are on the order of 6% between the

linear model and the next best method (running mean

hour) for both the 24- and 48-h SREF-ARW. The per-

formance of these two methods suggests that 1) the bias

in the forecasts is increasingly tied to a diurnal compo-

nent and 2) accounting for both additive and multipli-

cative errors to model the bias is more effective. The

ability of the fetch method to reduce the MAE also

decreases with forecast hour, and falls between (slightly

better than) the running mean and wind direction

methods for the GEFS (SREF-ARW) forecasts. More

importantly, the fetch-based MAE for the 48-h GEFS

forecasts is only slightly larger (0.04m s21) than the raw

RTMA, a state-of-the-art, high-resolution (2.5-km hor-

izontal grid spacing) analysis.

c. Case study: Easterly flow, 5 May 2015

The previous results indicate that the fetch method is

effective at reducing wind speed error over unresolved

water bodies. An advantage of the method is that it only

requires observations from similar stations rather than

proximity locations. As a result, it can be used to esti-

mate and remove biases in any region with characteris-

tics analogous to those of the training data. Here, the

method is applied to both downscale and bias-corrected

interpolated GEFS analysis wind speeds onto a 500-m

grid over the IRL. For this case, the flow is easterly

across the region, as indicated by the 0000 UTC 5 May

2015 surface analysis (Fig. 10). The 500-m grid covers
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the portion of the IRL near Cape Canaveral, the same

area shown in Fig. 2c.

The 0000 UTC 5 May 2015 interpolated raw GEFS

analysis is shown in Fig. 11a. High pressure to the north

results in easterly winds over the region that gradually

decrease in strength from east to west (ocean to land).

We present this specific case because postprocessing

methods are most useful during quiescent regimes

wheremodel bias does not changemuch from day to day

(Cheng and Steenburgh 2007). Also, this particular

synoptic setting occurs frequently over the region. Thus,

it provides a common scenario where the fetch method

performs at its best. Analysis of other case studies al-

lowed us to identify situations where the method did not

perform well, and these are discussed in section 5.

Using the linear method described in section 3b(3),

the GEFS analysis winds are bias corrected and then

spread using a simple Cressman weighting scheme

(Fig. 11b), as described by Yussouf and Stensrud (2006).

The radius of influence, which is set to 50km, results in a

smooth ‘‘bias corrected’’ analysis. The corrected analy-

sis is influenced by the biases at the XPAR, XMER,

XCCB, and XRPT stations (just south of the image

domain). The linear model produces negative wind

speedbiases atXPAR(21.37ms21),XCCB(21.94ms21),

and XRPT (20.65ms21), as well as a positive bias at

XMER (11.64m s21). The linear approach increases

the wind speed over the entire domain compared with

the raw GEFS analysis. However, the positive bias

at XMER reduces the impact on the grid cells near

the center of the image (Fig. 11c). Although bias in-

formation is used, the corrections are spread isotro-

pically with no distinction drawn between land- and

water-based grid cells. As a result, the IRL is still not

resolved.

In contrast, the fetch-based analysis is shown in

Fig. 12. For this case study, the fetches for 13 846 grid

cells were estimated, in 10-m increments, from the

center of the grid cell in the direction upwind of the raw

interpolated GEFS analysis wind direction using the

FIG. 9. MAE (m s21) averaged over a year’s worth of data (see text for details) from (left) the raw and bias-corrected analyses and the

(center) 24- and (right) 48-h forecasts for the interpolated (top) GEFS and (bottom) SREF-ARW. Error bars represent 95% confidence

intervals for MAE values.
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2011 National Land Cover Database (NLCD) land-use

dataset (Homer et al. 2015). From these fetch lengths,

the corresponding bias was estimated by fitting the train-

ing dataset comprising 0000 UTC analysis/observation

pairs from the 14 stations over a 30-day period ending

4 May 2015 (Fig. 13). The fit indicates increasingly

negative bias as the fetch increases. The raw analysis

winds are first interpolated onto the 500-m grid and then

corrected using the corresponding fetch-dependent bias

estimate. For illustration purposes, the ocean is masked

here. Over land, where the fetch is zero, the fetch

method increases wind speeds by 0.19ms21, corre-

sponding with the zero-fetch bias estimate from the

training data shown in Fig. 13. Over the IRL, wind

speeds increase with increasing (easterly) fetch, with

differences (compared to the raw GEFS) exceeding

3m s21 on the downwind side (i.e., western shorelines)

of the IRL. The magnitude of the largest adjustments is

consistent with GEFS-estimated fetch lengths on the

order of 10 km (Fig. 13). A closer look at the IRL near

Cape Canaveral, with the shorelines intentionally

removed, is shown in Fig. 12b. The IRL is clearly iden-

tifiable, manifest as the systematic (and physically con-

sistent) east-to-west wind speed increase (light-to-dark

gray shading) across the lagoon.

We examine a cross section (white line in Fig. 12b)

that intersects station XCCB following the wind

(Fig. 14). The wind speeds from the raw GEFS (dotted

line), linear model (dashed line), and fetch method

(solid line) are interpolated every 100m along the cross

section. Gray rectangles signify where the cross section

traverses either land or a bridge, and the verifying ob-

servation for XCCB (9.29m s21) is shown as the black

dot at its location. The wind speeds produced by the raw

and linear models are smooth and nondescript, with

wind speeds slowly decreasing moving WSW along the

cross section. In general, the fetch-generated wind

speeds increase along the water portions of the transect,

and relax toward the GEFS over land. Upwind of land,

the transition is gradual as a result of interpolation ar-

tifacts. Ultimately, the fetch-based wind speeds are

more representative of XCCB.

FIG. 10. Surface analysis valid at 0000 UTC 5 May 2015.
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The observed wind speeds at XPAR, XMER, and

XCCB are comparedwith theGEFS analysis and the bias-

corrected winds from both the linear and fetch methods in

Table 2. In this case, the interpolated GEFS wind speeds

are too lowat all three stations. The linearmodel (Fig. 11b)

yields slightly higher wind speeds at all three stations.

While it is a closematch at XMER, it underestimates wind

speed at the ‘‘openwater’’ stationsXPARandXCCB.The

fetch method over- (under-) estimates the wind speed at

XPAR (XCCB), but is more representative of the wind

speeds at the three stations, with an associated MAE of

0.25ms21, the smallest of the three.

5. Summary and discussion

In this study, a statistical method is introduced that

bias corrects and downscales wind speed over un-

resolved water bodies. The fetch method is designed to

correct for wind speed biases at locations without ob-

servations by estimating the bias using recent wind

speed errors from similar stations. The method was ap-

plied, along with four additional ‘‘local’’ bias correction

techniques, to one year’s worth of both gridded and in-

terpolated analysis wind fields from the GEFS control,

SREF-ARW control, and RTMA simulations. All bias

correction methods produced near-zero bias error and

reduced MAE by at least 18.8% compared with the

gridded or interpolated GEFS, SREF-ARW, and

RTMA analyses. The fetch approach’s reduction in

MAEwas slightly better than the runningmeanmethod,

and the results are comparable to those of the other bias

correction methods. The fetch method is capable of re-

ducing the analysis wind speed error in a coarse model

(e.g., 18 GEFS) to levels below that of a high-resolution

analysis (e.g., RTMA). The fetch approach was also

successfully applied to forecasts. Similar to the other

bias correction methods, its effectiveness at reducing

model error decreases with increasing forecast hour.

A case study was presented for which the fetch

method was used to downscale (from ;100-km grid

FIG. 11. Gridded (500m) wind speed analyses for the Cape Canaveral region valid 0000UTC 5May 2015. Shown are the (a) rawGEFS,

(b) bias-corrected (via linear model) GEFS interpolated using a Cressman weighting scheme, and (c) the difference between the two

analyses [(b)2 (a)]. Shading varies across the panels with contour intervals and wind speed ranges of 0.25 and 4.0–9.0m s21, respectively,

in (a) and (b) and 0.1 and 0.2–1.2m s21, respectively, in (c).
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spacing to 500m) an analysis wind speed field over the

Indian River Lagoon (IRL). The downscaled wind

speeds resolve the previously unresolved IRL and

reduced the average error at three observing stations

by approximately 1.5m s21. The fetch-based method

produces downscaled wind speeds that are more

consistent with the intricate land/water mask of the

coastal estuary—in contrast to the local approaches

where bias estimates are spread (interpolated) using

inverse distance-based weights.

FIG. 12. (a) The fetch-based bias-corrected wind speed analysis valid 0000 UTC 5 May 2015 and (b) an enlarged

view of the Cape Canaveral region (displayed without shorelines) and observed winds (half barb and full barb are

2.5 and 5m s21, respectively) at XPAR, XMER, and XCCB. For each (500m) grid cell, the fetch lengths were

calculated using the upwind direction from the raw interpolated GEFS analysis. The corresponding bias was es-

timated by fitting training data composed of 0000 UTC analysis/observation pairs from 14 stations over the 30-day

period prior to the analysis. Thewhite line at the bottom of (b) is the location of the cross section analyzed in Fig. 14.

FIG. 13. Training data (analysis/observation pairs) generated

using the wind speeds from 14 stations over a 30-day window

(5Apr–4May 2015) and the interpolated 0000UTCGEFS analysis

cycle. Note that the x axis is log scale.

FIG. 14. Wind speed (m s21) from the raw GEFS (dotted line),

linear model (dashed line), and fetch method (solid line) along the

transect shown in Fig. 12b. The data were interpolated every 100m.

The verifying observation, XCCB, is shown (black dot) along with

the individual land segments and bridges (light and dark gray

rectangles, respectively). The distance decreases eastward in the

upwind direction.
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Training datasets were constructed using both

nearest-neighbor and interpolated model output to

create observation/analysis pairs. Compared to the

nearest neighbor, the interpolation results were mixed,

with a lower (higher) MAE for the GEFS (SREF-

ARW) analysis winds and little impact on the RTMA

winds. This is an artifact of the location of the observa-

tions with respect to the model grids. Assigning a value

of 1 for land and 0 for water, the aggregate land value for

the 14 stations, using the nearest-neighbor approach, is

11 for the GEFS and 8 for the SREF-ARW (see Fig. 2).

After interpolation, the distance-weighted values

decrease (increase) to 8.89 (10.25) for theGEFS (SREF-

ARW). Thus, for the GEFS (SREF-ARW), interpola-

tion incorporates more (less) water-friendly wind

information. In general, one might expect that the

nearest-neighbor approach would produce higher MAE

results for coarser-resolution analyses.

During the cool season, fromOctober throughMarch,

the wind direction method is more effective at reducing

average MAEs than is either the linear or the fetch

model (this is especially true for both the GEFS and

RTMA). In the summer, this pattern reverses, with the

linear model the clear winner in all three analyses. Since

the linear model is stratified by cycle (and the wind di-

rection method is not), this suggests that the analysis

error is driven more by wind direction during the syn-

optic season, while the warm season exhibits more of a

diurnal component, where sea, lake, and land breezes

dominate the central Florida wind climate. A best ap-

proach for ‘‘local’’ bias correction at water-friendly

stations might incorporate both the linear and wind di-

rection methods. This could be done, for example, by

optimally combining the two methods (e.g., Sweeney

et al. 2013), or by using machine learning methods

such as artificial neural networks (e.g., Salcedo-Sanz

et al. 2009).

The error associated with the fetch method exhibits

some temporal variability that is model (analysis) de-

pendent. The largest variations in MAE occur in con-

nection with the GEFS, where it decreases from a

December peak to a June minimum. While the fetch

method has the highest MAE throughout the year (for

the RTMA), it is still substantially less than the raw

analyses. Ultimately, the fetch approach is competitive,

but might be improved by taking into account additional

predictors.

In developing the fetch approach, we assume that

wind speed error over unresolved water bodies is, to a

large extent, fetch dependent. The method performs at

its worst when this assumption is weak. For example, the

training dataset for the 1800 UTC 30 July 2015 analysis

(Fig. 5c) indicates that wind speed error is less de-

pendent on fetch at 1800 UTC than the other cycles

(i.e., a relatively flat fit line). This cycle exhibited similar

behavior during the spring, autumn, and winter (not

shown). Preliminary analysis suggests that this may,

in part, be related to sea, lake, and/or land breezes. At

1800 UTC, stations with short fetches, in the IRL and

St. John’s River, are typically impacted by the sea breeze,

which is not well resolved by the coarse-resolutionmodels

used here. This may result in higher observed wind speeds

(compared to the analyses), driving the negative bias at

short fetches. Possible future research might focus on in-

tegrating mesoscale features such as sea, lake, and land

breezes into the fetch method. However, doing so would

likely require the use of advanced statistical (e.g., data

assimilation) and/or dynamical downscaling approaches,

significantly increasing computational expense.

The fetch approach also performs poorly when sta-

bility effects significantly impact overwater wind speeds.

For example, during the winter, prefrontal southwest

flow can advect warm air over a much cooler (by 108C or

more) Lake Okeechobee. Lake fetches are long enough

to allow the development of a stable internal boundary

layer, which can result in relatively low winds at ane-

mometer height. We found many cases like this in the

training data (not shown). Under these circumstances,

the wind speed error can actually become more positive

with increasing fetch, opposite to what is normally ob-

served. This suggests that additional improvements

might be realized by incorporating stability effects into

the fetch method.

In this work we estimated the bias as the average wind

speed error of the trimmed dataset. Given the overall

good performance of the linear model, the fetch method

might also be improved by incorporating a relationship

between wind speed error and fetch length within the

trimmed dataset using a linear regression framework.

Restricting the training dataset to pairs with closely

matching analysis and observed wind direction could

also improve results. Also, the postprocessing methods

used here estimated bias using the most recent wind

speed errors within a specified training window. Results

TABLE 2. Analysis wind speeds (m s21) from left to right in-

cluding the raw interpolated GEFS, as well as the bias-corrected

linear (WSPDLM) and fetch (WSPDFETCH) models, and the veri-

fying wind speeds (subscript OBS) for stations XPAR,XMER, and

XCCB for the 5 May 2015 case study (Figs. 11 and 12). The bottom

row lists the MAE (m s21) associated with each method.

Station WSPDGEFS WSPDLM WSPDFETCH WSPDOBS

XPAR 5.57 6.26 7.47 7.02

XMER 5.83 6.21 6.28 6.32

XCCB 5.82 6.19 8.12 9.29

MAE 1.80 1.32 0.25 —
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could be improved by expanding the temporal extent of

the training window and only using training pairs that

serve as analogs to the upcoming analysis/forecast

(Delle Monache et al. 2011).
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